Clinical Biotensegrity

Illustrating a Data-based Clinical Model of Compression-Tension Forces That Facilitate Orthopedic Medical Diagnosis, Treatment, and Postural Rehabilitation

Gary B. Clark, MD, MPA

Center for Orthopedic Medicine BOULDER PROLOTHERAPY Boulder, Colorado

Disclaimers: None

Graphic Illustrations: Faith Gowan

"When we try to pick out anything by itself, we find that it is bound fast by a thousand invisible cords . . . to everything in the universe."

John Muir Personal Journal July 27,1869

In Memory of Michael Wayne Seamans, DO

Dedicated to

James S. Miles, MD

Professor Emeritus Chairman of Orthopedic Surgery University of Colorado School of Medicine Father of the "Five R's of Orthopedics"

Educational Goals

- 1. Introduce <u>a Brief Background History</u> of <u>Clinical Biotensegrity</u>
- 2. Introduce <u>the Scientific Model</u> Used to <u>Illustrate Clinical Biotensegrity</u>
- 3. Illustrate <u>Natural</u> Compression-Tension Forces in an <u>Ideally Balanced State</u>
- 4. Illustrate <u>Injurious</u> Compression-Tension Forces in an <u>Naturally Imbalanced State</u>
- Illustrate <u>Mapping</u> of Compression-Tension Forces

Goal 1:

Brief Historical History

of

Clinical Biotensegrity

Biotensegrity Historical Landmarks

- Sir Isaac Newton (1642-1727): Third Law of Motion¹
- Sir Charles Scott Sherrington (1857-1952): Law of Reciprocal Innervation²
- R. Buckminster Fuller (1895-1983): Principal of Tensional Integrity ("Tensegrity")³
- Kenneth Snelson (1927-): Principal of Floating Compression⁴
- Stevin M. Levin, MD: Coined "Biotensegrity"; Pioneer in clinical study of Biotensegrity since 1980's⁵
- Donald E. Ingbar, MD: Pioneer in academic study of Cellular and Tissue Biotensegrity since 1990's^{6,7}

Goal 2:

The Scientific Model

Used to Illustrate

Clinical Biotensegrity

Levels of Medical Evidence

- Single Case "unique" Casual Observation/ Expert Opinion
- Multiple Case Series Casual Observation/ Expert Opinion
- Case Series Study- Retro/prospective and Consecutive/nonconsecutive
- Case-Control Study
- Retrospective Cohort Study
- Prospective Randomized Controlled Study

Levels of Medical Evidence

- Single Case "unique" Casual Observation/ Expert Opinion
- Multiple Case Series Casual Observation/ Expert Opinion
- Case Series Study--Prospective (rigorously pre-planned) and Consecutive (including all cases presenting over a specific period)
- Case-Control Study
- Retrospective Cohort Study
- Prospective Randomized Controlled Study

SIJD Physical Characteristics^{9,10} Initial Observations Leading to Study

Most Reproducible Definitive Physical Signs							
	Dropped Inferior Sacral Angle	Short-sided Limp	Vertebral Scoliosis	Functionally Short Leg	Weakened Leg aBduction		
LSIJD	Left	Left Step Down	Dextro Lumbar	Left	Left Decreased		
RSIJD	Right	Right Step Down	Levo Lumbar	Right	Right Decreased		

SIJD Physical Characteristics^{9,10} Initial Observations Leading to Study

Most Reproducible Definitive Physical Signs							
	Dropped Inferior Sacral Angle	Short-sided Limp	Vertebral Scoliosis	Functionally Short Leg	Weakened Leg aBduction		
LSIJD	Left	Left Step Down	Dextro Lumbar	Left	Left Decreased		
RSIJD	Right	Right Step Down	Levo Lumbar	Right	Right Decreased		

Frequently Supportive Physical Signs							
	Dropped Shoulder	Restricted Sacroiliac Joint with	Supinated Foot	Pronated Foot			
LSIJD	Right	Left Ileal Flexion	Left	Right			
RSIJD	Left	Right Ileal Flexion	Right	Left			

SIJD Physical Characteristics^{9,10} Initial Observations Leading to Study

Most Reproducible Definitive Physical Signs								
	Dropped Inferior Sacral Angle	Short-sided Limp	Vertebral Scoliosis	Functionally Short Leg	Weakened Leg aBduction			
LSIJD	Left	Left Step Down	Dextro Lumbar	Left	Left Decreased			
RSIJD	Right	Right Step Down	Levo Lumbar	Right	Right Decreased			

Frequently Supportive Physical Signs							
	Dropped Shoulder	Restricted Sacroiliac Joint with	Supinated Foot	Pronated Foot			
LSIJD	Right	Left Ileal Flexion	Left	Right			
RSIJD	Left	Right Ileal Flexion	Right	Left			

Question: Why are all these physical parameters --from plantar arch to nuchal line seemingly linked in SIJD??

A Data-Based Clinical Example of Sacroiliac Joint Dysfunction (SIJD)

Clark G. Journal of Prolotherapy. 2011 9,10

<u>A Scientifically Planned Prospective Case-Series Study</u> of SIJD

Carried Out over Six Years

Data-Based Study of SIJD							
n = 110	Total	Female	Male	Sacral Stabilization Requiring OMT	Sacral Stabilization Requiring Prolo		
All SIJD		63%	37%				
LSIJD							
RSIJD							

Data-Based Study of SIJD							
n = 110	Total	Female	Male	Sacral Stabilization Requiring OMT	Sacral Stabilization Requiring Prolo		
All SIJD		63%	37%				
LSIJD	81%	82%	80%				
RSIJD	19%	18%	20%				

Data-Based Study of SIJD							
n = 110	Total	Female	Male	Sacral Stabilization Requiring only OMT	Sacral Stabilization Requiring Prolo		
All SIJD		63%	37%	30%	70%		
LSIJD	81%	82%	80%	29%	71%		
RSIJD	19%	18%	20%	31%	69%		

Data-Based Study of SIJD							
n = 110	Total	Female	Male	Sacral Stabilization Requiring only OMT	Sacral Stabilization Requiring Prolo		
All SIJD		63%	37%	30%	70%		
LSIJD	81%	82%	80%	30%	70%		
RSIJD	19%	18%	20%	30%	70%		

ALL the above-mentioned patients were Right-Handed!!

Only TWO Left-Handed patients have been encountered in 10 years of carefully documented Orthopedic Medical practice

Left Sacroiliac Joint Dysfunction (LSIJD)

Data-based Model Characterized by:

Primary Left Sacroiliac Ligament Laxity and Sacroiliac Joint Displacement

Compensatory <u>Dextrolumbar Scoliosis</u>

Compensatory Left Short Leg

Compensatory Right Long Leg

Goal 3:

Natural

Compression-Tension Forces

in an

Ideally Balanced

State

Biotensegrity Models, Examples, Analogies

Newton Apple Sherrington Agonist-Antagonist Wright Flyer Fuller Geodesic Dome Snelson Bead Chain X Column Levine Vertebrate Structures Ingbar Cytoskeletal Structures

Biotensegrity Models, Examples, Analogies

Newton Apple Sherrington Agonist-Antagonist Wright Flyer Fuller Geodesic Dome Snelson Bead Chain X Column Levine Vertebrate Structures Ingbar Cytoskeletal Structures

Cantieri Degenerative Postural Low Back Cascade⁸

Biotensegrity Models, Examples, Analogies

Newton Apple Sherrington Agonist-Antagonist Wright Flyer Fuller Dome Snelson Bead Chain X Column Levine Vertebrate Structures Ingbar Cytoskeletal Structures Cantieri Degenerative Postural Low Back Cascade⁸

Biotensegrity Man!!

Biotensegrity Woman!!

The Usual Forces at Play

Forces Causing Compression

- Passive Compression: Directly Due to Gravitational Force (Weight)
- Active Compression: Directly Due to Muscular Force

Forces Causing Tension

- Passive Tension: Directly Due to Gravitational or Indirect Muscular Force <1
- Active Tension: Directly Due to Muscular
 Force

The Usual Forces at Play

Ideal Skeletal-Ligament-Muscle Balance and Alignment

Goal 4:

Injurious

Compression-Tension Forces

in an

Imbalanced

State

Ideally Aligned and Balanced Sacrum-Pelvis

Primary Sacral Ligament Injury and Resultant Skeletal Displacement in LSIJD

Goal 5:

Мар

Compression-Tension Forces

Clinical Biotensegrity Force Map Resultant Sacral-Pelvic Passive Compression-Tension Forces in LSIJD

A Spectrum of Potential Sacral-Pelvic Injuries in LSIJD

Chronic Active Tension—Produced During Normal Standing-Flexing-Extending-Side Bending-Rotatingand-Ambulating in a Right-handed World

- Initially via Functionally Balanced Postural/Core Muscles
- These Postural/Core Muscles eventually decompensate and become functionally imbalanced

Chronic Passive Tension—Produced by Muscular/ Gravitational Forces

- <u>Bilateral Iliolumbar Ligament stress/strain/sprain/laxity</u>
- <u>Bilateral Superior-Inferior Posterior Sacroiliac Ligament</u>
 <u>stress/strain/sprain/laxity</u>
- Bilateral Sacrotuberous Ligament stress/strain/sprain/laxity

Chronic Passive Bilateral Sacroiliac Joint Compression —Produced by Gravitational Forces

Left Sacroiliac Joint displacement

Compensatory Scoliosis in LSIJD Theoretical Head Displacement

Compensatory Scoliosis in LSIJD Head Maintained over Center of Gravity

Compensatory Scoliosis in LSIJD Resultant Regional Side-Bending

Compensatory Scoliosis in LSIJD Resultant Vertebral Misalignment via Normal Spinal Mechanics

Compensatory Scoliosis in LSIJD Causal Active Muscle Tension

Additional Compensatory Right Posterior Sling Action in LSIJD

Clinical Biotensegrity Force Map Resultant Compression-Tension Forces in Compensatory Scoliosis of LSIJD

Clinical Biotensegrity Force Map Resultant Arcs of Force in Compensatory Scoliosis of LSIJD

A "Perfect Storm"

A Spectrum of Potential Scoliotic Injuries in LSIJD

Chronic Active Tension—Compensatory along Concave Arcs

- Right <u>Cervical Suboccipital/ Paraver-</u> <u>tebral Muscle</u> activation/shortening/ strain/spasm/sprain/tendinosis
- Left <u>Thoracic Paravertebral Muscle</u> activation/shortening/strain/spasm/ sprain/tendinosis
- Right <u>Lumbar Paravertebral Muscle</u> activation/shortening/strain/spasm/ sprain/tendinosis
- Right <u>Posterior Sling (Right Latissimus</u> <u>dorsi and Left Gluteus maximus)</u> activation/shortening/strain/spasm/ sprain/tendinosis
- Right <u>Quadratus Lumborum Muscle</u> activation/shortening/strain/spasm/ sprain/tendinosis
- Right <u>Thoracic Costovertebral Joint</u> dysfunction/<u>Interscapular Muscle</u> activation/shortening/strain/spasm/ sprain/laxity-tendinosis

Chronic Active Compression—Along Concave Arcs

- Right <u>C1-7 Vertebral Body</u> wedging/ <u>Facet Joint</u> arthritis/<u>Disc</u> disease/<u>Nerve</u> impingement
- Left <u>T1-12 Vertebral Body</u> wedging/ <u>Facet Joint</u> arthritis/Disc disease/Nerve impingement
- Right <u>L1-5 Vertebral Body</u> wedging/ <u>Facet Joint</u> arthritis/Disc disease/Nerve impingement

Chronic Passive Tension—Along Convex Arcs

- Left <u>Cervical Intervertebral Ligament</u> and <u>Muscle</u> stress/strain/spasm/sprain/ laxity-tendinosis
- Right <u>Thoracic Intervertebral Ligament</u> <u>and Muscle</u> stress/strain/spasm/sprain/ laxity-tendinosis
- Bilateral <u>T11-L 2 (crossover zone)</u> <u>Intervertebral Ligament and Paraspinal</u> <u>Muscle</u> stress/strain/spasm/sprain/ laxity-tendinosis
- Left <u>Lumbar Intervertebral Ligament</u> <u>and Muscle</u> stress/strain/spasm/sprain/ laxity-tendinosis

Chronic Passive Tension—Other Compensatory along Convex Arcs

- Right <u>Upper Trapezius Muscle</u> stress/ strain/spasm/sprain/tendinosis
- Right <u>Levator Scapulae Muscle</u> stress/ strain/spasm/sprain/tendinosis
- Right <u>Rotator Cuff</u> impingement/stress/ strain/spasm/sprain/tendinosis
- Left <u>Quadratus Lumborum Muscle</u> stress/strain/spasm/sprain/tendinosis

Compensatory Short Left Leg in LSIJD

Resultant Skeletal Displacement

Compensatory Short Left Leg in LSIJD Resultant Joint Deformities

Compensatory Short Left Leg in LSIJD Causal Active Muscle Tension

Clinical Biotensegrity Force Map Resultant Compression-Tension Forces in Compensatory Left Short Leg of LSIJD

Clinical Biotensegrity Force Map Resultant Arcs of Force in Compensatory Left Short Leg of LSIJD

A Spectrum of Potential Short Left Leg Injuries in LSIJD

Left Hip and Upper Leg

--Step-down/varus gait hip joint compressive injury

--Hamstring chronic active shortening/ stress/ strain/sprain/tendinosis at left ischial tuberosity

--Internal Rotator and aDductor active shortening/stress/strain/sprain/tendinosis at ileum and/or Greater Trochanter

--Posterior Capsular Ligament passive stress/strain/sprain

--External Rotator passive stress/strain/ sprain/tendinosis at sacrum and/or Greater Trochanter

Left Knee and Lower Leg

--Varus joint deformity

--Medial Tibial-Femoral articular cartilage compressive erosion

--Lateral Retropatellar articular cartilage compressive erosion

--Medial Gastrocnemius active shortening/stress/sprain/tendinosis

--Pes anserinus Tendon active shortening/stress/strain/ sprain/tendinosis

--Lateral Collateral/Coronary Knee and Fibular Ligaments passive stress/strain/ sprain/laxity

--Posterior Cruciate Ligament passive stress/ strain/sprain/laxity

Left Ankle

--Varus joint deformity prone to lateral sprain

--Medial articular cartilage compressive erosion

-- Achilles Tendon active shortening/ stress/strain/sprain/tendinosis

--Lateral Collateral Ligaments passive stress/strain/sprain/laxity

Left Foot

--Supination foot deformity

--Medial Tibialis posterior tendon active shortening/stress/strain/sprain/tendin-osis

--Medial Plantar muscles active shortening/stress/ strain/sprain/fasciitis/tendinosis

--Dorsilateral Ligaments passive stress/ strain/sprain/laxity

--Lateral Peroneus brevis/longus tendon passive stress /strain/sprain/tendinosis

Compensatory Long Right Leg in LSIJD Resultant Skeletal Displacement

Compensatory Long Right Leg in LSIJD Resultant Joint Deformities

Compensatory Long Right Leg in LSIJD Causal Active Muscle Tension

Clinical Biotensegrity Force Map Resultant Compression-Tension Forces in Compensatory Short Left Leg of LSIJD

Clinical Biotensegrity Force Map Resultant Arcs of Force in Compensatory Short Left Leg of LSIJD

A Spectrum of Potential Long Right Leg Injuries in LSIJD

Right Hip and Upper Leg

-- Long leg vaulting/valgus gait compression joint injury

-- <u>External rotator</u> active stress/strain/ sprain/tendinosis at sacrum and/or Greater Trochanter

-- <u>Lateral Quadriceps and Patellar tendon</u> active stress/strain/sprain/tendinosis

-- <u>Anterior capsular passive stress/strain/</u> sprain/laxity

-- <u>Internal rotator</u> passive shortening/ stress/strain/sprain/tendinosis

Right Knee and Lower Leg

-- Valgus joint deformity

-- Lateral <u>tibial-femoral articular cartilage</u> compressive erosion

-- Medial <u>retropatellar articular cartilage</u> compressive erosion

-- <u>Medial knee ligaments</u> passive stress/ strain/sprain/laxity

-- <u>Anterior cruciate ligament</u> passive stress/ strain/sprain/laxity

Right Lower Leg and Ankle

-- Valgus joint deformity prone to medial sprain/laxity

-- <u>Lateral articular cartilage</u> compressive erosion

-- Anteromedial <u>Tibialis posterior</u> passive stress/strain/sprain/tendinosis ("shin splints")

-- <u>Medial collateral ligaments</u> passive stress/strain/sprain/laxity

Right Foot

- -- Accentuated Pronation foot deformity
- -- Lateral <u>Peroneus brevis/longus</u> tendon active stress/strain/sprain/tendinosis

-- Dorsilateral <u>foot myofascial</u> active stress/strain/sprain/"fasciitis"--tendinosis

-- <u>Medial-plantar ligaments</u> passive stress /strain/sprain/laxity

Whole-Body Compression-Tension Arcs and Spectrum of Potential Injuries in LSIJD

From the Plantar Arch to the Nuchal Line

Whole-Body Compression-Tension Arcs and Spectrum of Potential Injuries in RSIJD

From the Plantar Arch to the Nuchal Line

Sequence of Therapies for SIJD

• FIRST, stabilize sacral displacement!!

- OMT: 30%
- Prolotherapy: 70%

Sequence of Therapies for SIJD

- FIRST, stabilize sacral displacement!!
 - **OMT: 30%**
 - Prolotherapy: 70%
- THEN, resolve and rehabilitate compensatory injuries sequentially or in tandem.

Sequence of Therapies for SIJD

- FIRST, stabilize sacral displacement!!
 - **OMT: 30%**
 - Prolotherapy: 70%
- THEN, resolve and rehabilitate compensatory injuries sequentially or in tandem.
- WARNING: Avoid potential iatrogenic worsening of pre-existing scoliosis.

Generate Other Data-Based Biotensegrity Models:

Improve the SIJD Model with its major clinical variants Head-TMJ-Neck- Shoulder Injuries (e.g., whiplash) Upper Extremity Injuries (e.g., epicondylosis) Lower Extremity Injuries (e.g., Pes planus, Pes cavus) Left/Right Sacroiliac–Right/Left Posterior Sling–Right/Left Shoulder Dysfunction

Determine mechanism of leg aBductor (Gluteus medius) inhibition in SIJD

(perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers)

Determine on a Biotensegrity Basis <u>when NOT</u> to stabilize the sacrum to preclude iatrogenic worsening of pre-existing scoliosis

Determine physiological and therapeutic differences between Passive Musculo-Tendinous Injuries versus Active Musculo-Tendinous Injuries

Explore the most appropriate OMT, Injection Therapy, Orthotic Therapy, and Rolfing, Pilates, Physical Therapy, and Other therapeutic and postural rehabilitative sequential approaches for various Biotensegritous injuries

..... and more

Generate Other Data-Based Biotensegrity Models:

Improve the SIJD Model with its major clinical variants Head-TMJ-Neck-Shoulder Upper Extremity Lower Extremity

Generate Other Data-Based Biotensegrity Models: Improve the SIJD Model with its major clinical variants Head-TMJ-Neck-Shoulder Upper Extremity Lower Extremity

Explore Mechanism of Leg aBductor (Gluteus medius) Inhibition in SIJD

perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers

Generate Other Data-Based Biotensegrity Models: Improve the SIJD Model with its major clinical variants Head-TMJ-Neck-Shoulder Upper Extremity Lower Extremity

Explore Mechanism of Leg aBductor (Gluteus medius) Inhibition in SIJD

perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers

Explore on a Biotensegrity Basis When NOT to Stabilize the Sacrum to preclude iatrogenic worsening of pre-existing scoliosis

Generate Other Data-Based Biotensegrity Models: Improve the SIJD Model with its major clinical variants Head-TMJ-Neck- Shoulder Injuries (e.g., whiplash) Upper Extremity Injuries (e.g., epicondylosis) Lower Extremity Injuries (e.g., Pes planus, Pes cavus) Left/Right Sacroiliac–Right/Left Posterior Sling–Right/Left Shoulder Dysfunction

Explore mechanism of leg aBductor (Gluteus medius) inhibition in SIJD

(perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers)

Explore on a Biotensegrity Basis <u>when NOT</u> to stabilize the sacrum to preclude iatrogenic worsening of pre-existing scoliosis

Explore Physiological and Therapeutic Differences between Passive Musculo-Tendinous Injuries versus Active Musculo-Tendinous Injuries

Generate Other Data-Based Biotensegrity Models: Improve the SIJD Model with its major clinical variants Head-TMJ-Neck- Shoulder Injuries (e.g., whiplash) Upper Extremity Injuries (e.g., epicondylosis) Lower Extremity Injuries (e.g., Pes planus, Pes cavus) Left/Right Sacroiliac–Right/Left Posterior Sling–Right/Left Shoulder Dysfunction

Explore Mechanism of leg aBductor (Gluteus medius) inhibition in SIJD

(perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers)

Explore on a Biotensegrity Basis When NOT to stabilize the sacrum to preclude iatrogenic worsening of pre-existing scoliosis

Explore Physiological and Therapeutic Differences between Passive Musculo-Tendinous Injuries versus Active Musculo-Tendinous Injuries

Explore the Most Appropriate

OMT, Injection Therapy, Orthotic Therapy, and Rolfing, Pilates, Physical Therapy, and Other Therapeutic and Postural Rehabilitative sequential approaches for various Biotensegritous injuries

Generate Other Data-Based Biotensegrity Models: Improve the SIJD Model with its major clinical variants Head-TMJ-Neck- Shoulder Injuries (e.g., whiplash) Upper Extremity Injuries (e.g., epicondylosis) Lower Extremity Injuries (e.g., Pes planus, Pes cavus) Left/Right Sacroiliac–Right/Left Posterior Sling–Right/Left Shoulder Dysfunction

Determine mechanism of leg aBductor (Gluteus medius) inhibition in SIJD

(perhaps due to Sherrington-oid "reciprocal innervation" between anterior and posterior fibers)

Determine on a Biotensegrity Basis <u>when NOT</u> to stabilize the sacrum to preclude iatrogenic worsening of pre-existing scoliosis

Determine physiological and therapeutic differences between Passive Musculo-Tendinous Injuries versus Active Musculo-Tendinous Injuries

Explore the most appropriate OMT, Injection Therapy, Orthotic Therapy, and Rolfing, Pilates, Physical Therapy, and Other therapeutic and postural rehabilitative sequential approaches for various Biotensegritous injuries

..... and more

• Home for the e-Journal for Clinical Biotensegrity

- Home for the e-Journal for Clinical Biotensegrity
- Data-Based Report Articles on Clinical Biotensegrity

- Home for the e-Journal for Clinical Biotensegrity
- Data-based Report Articles on Clinical Biotensegrity
- Outcome Database Formats for Various Body Regions and Specific Joints

- Home for the e-Journal for Clinical Biotensegrity
- Data-based Report Articles
- Outcome Database Formats for Various Body Regions and Specific Joints
- Clinical Biotensegrity Presentation Videos

Bibliography

- 1. Newton I. http://www.britannica.com/EBchecked/topic/413189/ Sir-Isaac-Newton/12253/The-Principia.
- 2. Sherrington CS. http://.www.britannica.com/EBchecked/topic/ 540150/Sir-Charles-Scott-Sherrington.
- 3. Fuller RB. Tensegrity. Portfolio and Art News Annual, No 4, 1961.
- **4. Snelson K.** Letter to R. Motro. *International Journal of Space Structures*, November 1990.
- Levin S. "Tensegrity, the New Biomechanics"; Hutson, M & Ellis, R (Eds.), *Textbook of Musculoskeletal Medicine*. Oxford: Oxford University Press. 2006.
- 6. Ingbar DE. "The Architecture of Life", *Scientific American*, Jan 1998; 278:48-57.
- 7. Ingbar DE. Tensegrity I. <u>J Cell Sci</u>, 116(April):1157-1173;2003.
- 8. Ravin, Cantieri, Pasquarello. 2008. *Principles of Prolotherapy*. Denver: Amer Acad Muscuskel Med: 40-44.
- 9. Clark GB. Building a rationale for evidence-based prolotherapy in an orthopedic medicine practice. Part III: A case series report of chronic back pain associated with sacroiliac dysfunction treated by prolotherapy. A six-year prospective analysis. *Journal of Prolotherapy*, 3(May):632-639;2011.
- 10. Clark GB. Building a rationale for evidence-based prolotherapy in an orthopedic medicine practice. Part IV: Diagnosing linked prolotherapy targets by applying a data-based biotensegrity model. *Journal of Prolotherapy*, 3(August):722-735;2011.